首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   974篇
  免费   103篇
  国内免费   36篇
  2023年   16篇
  2022年   10篇
  2021年   30篇
  2020年   35篇
  2019年   38篇
  2018年   37篇
  2017年   38篇
  2016年   45篇
  2015年   36篇
  2014年   42篇
  2013年   78篇
  2012年   49篇
  2011年   57篇
  2010年   53篇
  2009年   59篇
  2008年   57篇
  2007年   61篇
  2006年   38篇
  2005年   41篇
  2004年   33篇
  2003年   37篇
  2002年   29篇
  2001年   34篇
  2000年   31篇
  1999年   16篇
  1998年   12篇
  1997年   8篇
  1996年   13篇
  1995年   5篇
  1994年   10篇
  1993年   9篇
  1992年   9篇
  1991年   10篇
  1990年   5篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1982年   4篇
  1981年   6篇
  1980年   1篇
  1979年   3篇
  1977年   1篇
排序方式: 共有1113条查询结果,搜索用时 140 毫秒
1.
Maritime traffic is an issue of major ecological concern, and vessel noise may be an important source of disturbance for coastal cetaceans. In the Sado estuary, Portugal, core habitat areas of a small resident population of bottlenose dolphins (Tursiops truncatus) overlap with routes of intense maritime traffic, which presents an opportunity to assess vocal responses of these dolphins to specific vessel noise sources. Field recordings of dolphin vocalizations were made from April to November 2011, using a calibrated system. Dolphin behavior and group size were recorded, as well as the operating boat condition (no boats or specific boat type) in a 1,000 m radius. Spectral analyses of vocalizations allowed the categorization and quantitative analysis of echolocation click trains and social calls, including whistles. Mean overall call rates decreased significantly in the presence of operating vessels. Creaks (fast click trains) were significantly reduced in the presence of ferry boats. Significant differences were also observed in the whistles' minimum, maximum, and start frequencies. These changes in call emission rates and temporary shifts in whistles characteristics may be a vocal response to the proximity of operating vessels, facilitating communication in this busy, noisy estuary.  相似文献   
2.
《Current biology : CB》2020,30(11):2146-2155.e5
  1. Download : Download high-res image (177KB)
  2. Download : Download full-size image
  相似文献   
3.
4.
5.
Research has shown that bird songs are modified in different ways to deal with urban noise and promote signal transmission through noisy environments. Urban noise is composed of low frequencies, thus the observation that songs have a higher minimum frequency in noisy places suggests this is a way of avoiding noise masking. Most studies are correlative and there is as yet little experimental evidence that this is a short-term mechanism owing to individual plasticity. Here we experimentally test if house finches (Carpodacus mexicanus) can modulate the minimum frequency of their songs in response to different noise levels. We exposed singing males to three continuous treatments: low–high–low noise levels. We found a significant increase in minimum frequency from low to high and a decrement from high to low treatments. We also found that this was mostly achieved by modifying the frequency of the same low-frequency syllable types used in the different treatments. When different low-frequency syllables were used, those sung during the noisy condition were longer than the ones sang during the quiet condition. We conclude that house finches modify their songs in several ways in response to urban noise, thus providing evidence of a short-term acoustic adaptation.  相似文献   
6.
Understanding of the range and mechanisms of clathrin functions has developed exponentially since clathrin's discovery in 1975. Here, newly established molecular mechanisms that regulate clathrin activity and connect clathrin pathways to differentiation, disease and physiological processes such as glucose metabolism are reviewed. Diversity and commonalities of clathrin pathways across the tree of life reveal species-specific differences enabling functional plasticity in both membrane traffic and cytokinesis. New structural information on clathrin coat formation and cargo interactions emphasises the interplay between clathrin, adaptor proteins, lipids and cargo, and how this interplay regulates quality control of clathrin’s function and is compromised in infection and neurological disease. Roles for balancing clathrin-mediated cargo transport are defined in stem cell development and additional disease states.  相似文献   
7.
8.
Experimental studies demonstrate the existence of phenotypic diversity despite constant genotype and environment. Theoretical models based on a single phenotypic character predict that during an adaptation event, phenotypic noise should be positively selected far from the fitness optimum because it increases the fitness of the genotype, and then be selected against when the population reaches the optimum. It is suggested that because of this fitness gain, phenotypic noise should promote adaptive evolution. However, it is unclear how the selective advantage of phenotypic noise is linked to the rate of evolution, and whether any advantage would hold for more realistic, multidimensional phenotypes. Indeed, complex organisms suffer a cost of complexity, where beneficial mutations become rarer as the number of phenotypic characters increases. Using a quantitative genetics approach, we first show that for a one-dimensional phenotype, phenotypic noise promotes adaptive evolution on plateaus of positive fitness, independently from the direct selective advantage on fitness. Second, we show that for multidimensional phenotypes, phenotypic noise evolves to a low-dimensional configuration, with elevated noise in the direction of the fitness optimum. Such a dimensionality reduction of the phenotypic noise promotes adaptive evolution and numerical simulations show that it reduces the cost of complexity.  相似文献   
9.
Cellular life depends on protein transport and membrane traffic. In multicellular organisms, membrane traffic is required for extracellular matrix deposition, cell adhesion, growth factor release, and receptor signaling, which are collectively required to integrate the development and physiology of tissues and organs. Understanding the regulatory mechanisms that govern cargo and membrane flow presents a prime challenge in cell biology. Extracellular matrix (ECM) secretion remains poorly understood, although given its essential roles in the regulation of cell migration, differentiation, and survival, ECM secretion mechanisms are likely to be tightly controlled.Recent studies in vertebrate model systems, from fishes to mammals and in human patients, have revealed complex and diverse loss-of-function phenotypes associated with mutations in components of the secretory machinery. A broad spectrum of diseases from skeletal and cardiovascular to neurological deficits have been linked to ECM trafficking. These discoveries have directly challenged the prevailing view of secretion as an essential but monolithic process. Here, we will discuss the latest findings on mechanisms of ECM trafficking in vertebrates.  相似文献   
10.
《Epigenetics》2013,8(3):448-458
The mechanisms by which air pollution has multiple systemic effects in humans are not fully elucidated, but appear to include inflammation and thrombosis. This study examines whether concentrations of ozone and components of fine particle mass are associated with changes in methylation on tissue factor (F3), interferon gamma (IFN-γ), interleukin 6 (IL-6), toll-like receptor 2 (TLR-2), and intercellular adhesion molecule 1 (ICAM-1). We investigated associations between air pollution exposure and gene-specific methylation in 777 elderly men participating in the Normative Aging Study (1999–2009). We repeatedly measured methylation at multiple CpG sites within each gene’s promoter region and calculated the mean of the position-specific measurements. We examined intermediate-term associations between primary and secondary air pollutants and mean methylation and methylation at each position with distributed-lag models. Increase in air pollutants concentrations was significantly associated with F3, ICAM-1, and TLR-2 hypomethylation, and IFN-γ and IL-6 hypermethylation. An interquartile range increase in black carbon concentration averaged over the four weeks prior to assessment was associated with a 12% reduction in F3 methylation (95% CI: -17% to -6%). For some genes, the change in methylation was observed only at specific locations within the promoter region. DNA methylation may reflect biological impact of air pollution. We found some significant mediated effects of black carbon on fibrinogen through a decrease in F3 methylation, and of sulfate and ozone on ICAM-1 protein through a decrease in ICAM-1 methylation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号